Math 332H • March 13, 2009

Midterm Examination
This is a closed-book exam; neither notes nor calculators are allowed.

1) (30pts) For each, find all distinct values of z, and show roughly their locations as points in the complex plane:
(a) $z=(\sqrt{3}-i)^{1 / 4}$
(b) $z=(1+i)^{i}$
(c) $\cos Z=-4$.
2) (17pts) Sketch the mapping of the region $0 \leq \operatorname{Re} z \leq \pi,-1 \leq \operatorname{Im} z \leq 1$, under the transformation $w=\exp (i z+1)$
3) (17pts) Consider an analytic function $f(z)=f(x, y)$, where $z=x+i y$. Which of the following identities is/are true? Explain using the limit definition of the derivative.
(a) $\frac{d f}{d z}=i \frac{\partial f}{\partial x}$
(b) $\frac{d f}{d z}=-i \frac{\partial f}{\partial y}$
(c) $\frac{d f}{d z}=\frac{\partial f}{\partial x}$
(d) $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}$
4) (18pts) Calculate the following contour integrals (use any method you like):
(a) $\int_{C}|z|^{2} d z$, where C is a straight line from point $(1,4)$ to point $(-1,0)$.
(b) $\int_{C} \frac{z d z}{4+z^{2}}$, where C is a unit quarter-circle in the $1^{\text {st }}$ quadrant, in the counterclockwise direction, from point $(1,0)$ to point $(0,1)$.
5) (18pts) Which of these integrals equal zero for any closed contour C contained within the ring $1 \leq|z| \leq 2$? Explain your answer in terms of the Cauchy-Goursat and/or other theorems:
(a) $\oint_{C} z^{1 / 2} d z$
(b) $\oint_{C} \frac{d z}{3 i+z}$
(c) $\oint_{C} \frac{d z}{(1+2 z)^{3}}$

Alternative problems: you may do problem (2B) instead of (2), and/or problem (3B) instead of (3), but note the smaller number of credit points:

2B) (14pts) Derive the expressions $u(x, y)$ and $v(x, y)$ for the real and imaginary parts of function $\cos z=\cos (x+i y)$, starting with the definition of cosine in terms of the exponential function, and using the Euler's formula.

3B) (14pts) Evaluate (using $\varepsilon-\delta$ definition), or prove that the limit does not exist:
(a) $\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z \cdot|z|}$
(b) $\lim _{z \rightarrow 0} e^{-\frac{1}{|z|^{2}}}$

